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courses use about the same number of teaching assistants per student. In the
lecture-discussion section course we employ readers (upper-division students and
some graduate students) to grade the homework that all students are required to
turn in. In the self-paced course we employ tutors (upper-division students and
some graduate students) on an hourly basis to help students, as described earlier.

There is also the problem of the efficient use of space. For the lecture course
we use four large lecture halls three days a week for one hour and dozens of small
rooms twice a week for one hour. In the self-paced course, two rooms are used all
day at least three days a week. There is also a storage room. Several people here
have tried to analyze this information with respect to cost and have decided that
self-pacing is slightly more expensive but worth the outlay. Each institution would
have to examine its own data to decide which method is more costly.

7. Other courses. Every beginning student at Berkeley who wishes to elect a
mathematics course must take a diagnostic test in elementary algebra and
trigonometry. Those who pass the test can choose the standard calculus course,
Math 1AB (lecture-discussion section), Math 1S (self-paced), or Math 16AB, the
weaker course described earlier. Those who fail the test must take a one-semester
precalculus course, called Math P. After the success of the self-paced Math 1S was
fully recognized, we introduced self-paced versions of Math P and Math 16AB.
These courses have been operating successfully for several years, so that all our
beginning mathematics students have the option of taking a lecture-discussion
section course or a self-paced course. I believe that all lower division courses with
large enrollments should give each student the option of attending large lectures
and small discussion sections or of learning the subject at his own speed. I
anticipate that the second-year mathematics course at Berkeley, which has large
enrollments every term, will soon offer students these two options. It may develop
that the self-paced second-year course will be even more popular than the
first-year, self-paced courses are.

Number Systems With a Complex Base: a Fractal Tool
for Teaching Topology

DANIEL GOFFINET
9 Rue de la Republique, St. Etienne, 42100 France

It so happens that I teach a first course in topology and a course in program-
ming to the same students. Number systems other than the decimal one have
proven to be a useful tool in the two areas. The number system with a complex
base and digits 0 and 1 that is described in this note illustrates many topological
notions and enthralled most of my students. An historical survey of the idea of
using nonreal bases can be found in [1, pp. 188-190].

I gave them the program to play with, without any specific questions, in the
hope of helping them to formulate and answer their own questions. Because they
were only beginners in topology they mostly asked about programming details
rather than the questions on connectivity that I had in mind. Still, I think it would
make students with some topological background understand the necessity of the
so-called “abstract” definitions.
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1. Definition of the set B. Let b = 1/2. Each x €[0,1] can be written as
>{b": n € A} for some subset of A of N7, the set of positive integers. Occasionally
a number has two representations (that is, different sets A4). With b = 1/3, the set
of the Lb", with A once more ranging over all subsets of N*, is a Cantor set.
Representations are then unique, but there are holes in the set.

More generally, I define B as the set of all the X{b": n € A}. It is then easy to
prove that

« If 0 < b < 1/2, B is totally disconnected and representations are unique.
o« If 1/2 < b <1, B is an interval, but different 4 may produce the same x.

What does one get with a complex b? If b is either i or a complex cube root of
1, B is easily seen to be a lattice. For other values of b inside the unit ball, see
Figures 1-10. In what follows, b denotes a complex number with |b] < 1.

2. A simple proof that B is compact. Let = FP(N*) be the set of subsets of
N* with the topology induced by the metric d(A, B) = 2~ ™nAAB) where A
denotes symmetric difference. The compactness of & then follows from the fact
that & is complete and totally bounded.

V3

b = 0.97¢7/1.95 b= —-049 + 0.97—2—
Fic. 1. Fic. 2.

=25
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b=10.65-03i b= —0.697e2™/5

Fic. S. Fic. 6.

b=08+0.2i 0.5 + 0.5
Fic. 7. Fic. 8.
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Fic. 1-10. Some examples of B, where the images are produced by considering only sets A
arising as subsets of {1, ..., 15} (except for FiG. 9 which uses subsets of {1, ..., 13}).
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& is complete. If A, is a Cauchy sequence in & then for every p € N* the
sets A, N [1, p] are eventually constant, which yields the limit.

P is totally bounded. For every p, & is a finite union of sets with diameter
smaller than 277, namely the 27 sets obtained by considering, for each subset of
[1,p], all its supersets in . Alternatively, compactness follows from the fact that
the symmetric-difference topology coincides with the product topology obtained by
considering & as {0, 1}V" (where {0, 1} is given the discrete topology).

If we define ¢,: #— C by ¢,(A) = L{b": n € A}, then ¢, is continuous;
hence, for each b, B = ¢,(&?) is compact. Another proof of compactness appears
at the beginning of §3.

We will use the compactness of B to prove that C is the union of copies of the
set B in the case that b = (1 + i) /2 (see Fic. 8). The easy way to see this is to
look at [1, §4.1]. But you can do it yourself with a pencil and graph paper. Because
the set is in some ways a counterpart to [0, 1] (which is B for b = 1/2), let us first
look at the counterpart of N (which is obtained from binary expansions in [0, 1] by
replacing each 1/2 by 2 and considering only finite expansions). Because b is now
(1+1i/2, b=1/B with B =1 —i. Taking this B as base, and observing that
B8 = 16, leads us to look at ¢, = {X{B*: k € C}: C c{0,1,2,3,4,5,6,7}}.

We start with the baby dragon ¢, = {L{b*: k € C}: C {0,1,2,3}}. When 4 is
added to the set of admissible exponents, €5 becomes ¢, which consists of two
copies of ¢5. Continue until reaching ¢, which consists of 16 &,s (see Figs.
11-12). Now it is easy to check that another copy of ¢, translated 16 units
rightward will fit with the first copy as in a jigsaw puzzle. Repeating yields a strip
of ¢;s (see Fig. 13). Again, inspection shows that translating this doubly infinite
strip by 16 yields a strip that fits with the first one. Thus every Gaussian integer
(i.e., element of G = Z + Zi) may be written uniquely in the form ¢ + 16(p + gi)
with ¢ € ¢, and p,q € Z. In short: G = 16G + ¢,.

Now, let us return to proving that C can be covered by G-translations of
B =T qab% a, €(0,1}). Let B, = {Z, _, csnarb*: a, €1{0,1}}, with B, =
{0). Then B, = b®¢, = ¢,/16. Because B,/16 = {Ly_, . 16a,b*: a, € {0,1}}, we
have that B, = 9B, + (1/16)B, = B, + (1/16*)¢,. Similarly B, =B,_, +
(1/16™)¢,. Assume inductively that B,_, + G = G/16" ! (clearly, B, + G = G).
Then B, + G =(B,_, + 6) + (1/16M¢, = (1/16""HG + (1/16")¢, =
(1/16"X16G + ¢,) = G/16". Since B + G 2B, + G, B + G contains all points
in a grid of mesh (1,/16)". It follows that for any square there is a finite union of
G-translates of B (a compact set) which is dense in the square. Hence, B + G
contains the square, and so 8 + G = C.

As with the usual base-10 representations, we lose uniqueness when we pass to
the limit; for example: b = 1 + (b2 + b3 + ---).

3. Going deeper into the topology of B. I owe the following fixed-point idea to
[5]. If ¥ is the set of nonempty, compact subsets of the plane, the Hausdorff
distance is defined as 8(X,Y) = max{sup d(x,Y),sup d(y, X)}; then (%, 8) is a
complete space [2, p. 56]. I now define T, by T,(z) = bz and T, by T\(z) = b + bz.
The functions T, and T, are contractions of C, and also clearly induce contractions
of (#,8). If T=T, U T, is defined by T(X) = To(X) U T(X), then T is also a
contraction of (%, §), because we can easily prove that

(X, UX,,Y,UY,) <max{6(X,,Y,),8(X,,Y,)}.

Therefore T has a unique fixed point in %/, and it is the limit of the sequence of
the T"(K,) for any K. Taking K, = {0} we have that T"(K) equals those points
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Fic. 11. Two copies of the baby dragon, Fic. 12. The set ¢, which is built
¢, yields €. up from 8 copies of €.

Fic. 13. The Gaussian integers can be tiled with copies of the set ;.

in B with at most n “digits” in their representation. So B, the limit of the
sequence, is in % (i.e., is compact) and is a fixed point of T.

4. Connectivity. I now claim that B is either connected or totally disconnected.
Set B = T,(B) and B' = T,(B); then B = T(B) = B° U B'.

Case 1. BN B' = @. If m € B, then .#, its connected component in B, is
contained in B’ (B and B' are compact as images of B by the continuous
functions T, and T, respectively). But B’ itself is a disjoint union of compact sets
so .# is included in some T;T,(®8). By induction we can prove that .# is a subset of
the intersection of a decreasing sequence of compact sets whose diameters tend to
zero. It follows that .# is simply {m}.

Case 2. B° N B! # . In this case B is connected. Choose a € B° N B!, say,
a =bay,=b + ba,. Because B is compact, to prove that it is connected it is
enough to check that for every z € 8 and ¢ > 0, there is an e-chain in B from z
to a. If ¢ is greater than the diameter of B then (z, a) is such a chain. Let us show
that from a-chains we can build Aa-chains where A < 1 is the modulus of b. Since
z € B we have two cases:

If z € B° then z = bd, and we can “a-link” d to a, then a to a,. Now take the
images by T, of these chains (i.e., simply multiply by b) to Aa-link bd to ba to
ba, = a.

If z€ W' then z =b + bd, and we can a-link d to a to a,. Then take the
images of these chains by 7.
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If the modulus r of b is less than 1/2, then B" = (L, . ,a,b*} and B' = B’ + b
are disjoint. For if ¥, _,a,b% =b + L, _,a}b% then b =¥, ,a,b" with a €
{—1,0,1} and, taking the modulus, r < ¥, _,r* = r?/(1 — r) which implies r >
1/2. Therefore, when r < 1/2 we are sure that B is totally disconnected.

On the other hand, when, for a fixed argument of b, r grows, B° and B! are
bigger, and may or may not meet. By looking at Figures 1-10 you can try to guess
which among those B's are connected, checking your guesses with §7.

5. How to get nice pictures. With color of course! The idea is to take b big
enough for ¢ not to be injective, but not too big, and to associate to each point of
the screen a color according to the number of times it is generated. An example of
the sort of effect this yields appears in FIGURE 5, where there are dark gray B-like
regions inside B. Another example: With b = —0.1 — 0.8/ and the range of colors
taken to be light blue, blue, green, light green, yellow, light magenta, red, and
white, one gets a silky cushion with sun rays shining from the bottom left corner. If
you like hairy monsters (see Fias. 5, 6, 8, and 10) choose b with an argument very
close to a root of 1. To get soft and friendly-looking Bs, use a bigger modulus, and
an arbitrary argument.

6. Programming. In order to quickly generate the set of finite parts of B, I
used a Boolean version of the binary number system: Starting with an array of
Falses—standing for Os—I repeatedly added 1 (that is, TRUE) and then converted
that array into a complex number, which was then displayed on the screen.

In the procedure given below max is the number of binary digits to be used
(which I took to be 16 for my images); b[i] is an array element containing b’; add
is a complex number addition routine defined elsewhere in the program; bin_dig is
the name of the binary-digit array.

procedure add_one_and_make_a_complex_number;
var carry: Boolean
k: 1..max

begin
carry = true; k = max;
while carry do begin
bin_digLkl := not (bin_diglkl);
if not (bin_digLkl) then k = k - 1
else carry = false
end;
z = 0;
for k = 1 to max do if bin_digl[kl then add (z,
bLkl, 2z)
end;

7. Which images are connected? Let %8, be the set of Figure i (i < 10).
However disconnected B, and ¥B; may seem, the truth is the opposite.

The connectedness of B, is easily proved by looking at real parts: they form
another B-like set with b = (—0.931)%. Because (0.931)? > 1/2, the real parts
form an interval; similarly, so do the imaginary parts. Thus %8, is simply a full
rectangle. If b, denotes the base used to construct B,, then the cube of b, is close
to 1. Thus B, contains the point X% _,b3" = 1/(1 — b3), whose actual value is
about 12 + 2i. Thus the image in FIGURE 2 is only a small part of the true image

of B,, which seems to be hexagonal.
Why do B, and B, look broken? Because the images were made with subsets

of {1,...,15} instead of all subsets of N*; when b has a modulus close to 1, all the
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“digits” are needed to make B look whole. Another example: B, is disconnected,
although one cannot really tell from the image—a proof is needed. The four upper
right blobs can be separated from the four bottom left ones by a strip that can be
physically measured and seen to be greater than 1,/50. The modulus of b is smaller
than 0.64, so with the powers greater than 13 a gap wider than 0.64'* /(1 — 0.64)
(which is well under 1/50) cannot be bridged. Therefore B, is indeed discon-
nected.

The set of those b for which B is connected is described in [3], where, among
other things, it is proven that % is connected if |6 > V2 /2. Among the Bs shown
in Ficures 1-10, only B, and B, are disconnected.

8. Miscellaneous. A lot of things are left to be explored. When B is connected
and simply connected (see Figs. 7 and 8), is the boundary of fractal dimension
strictly greater than 1 (as it seems)? Is that boundary the image of a continuous
map from [0, 1] in R? (as it seems)? Why does B have B s-like eggs inside it (dark
gray)?

I tried to replace C by the algebra with (a, b) - (¢, d) = (ac + bd, ad + bc), but
got nothing worth showing. Why not?

Acknowledgement. I am grateful to the referees for many suggestions.
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A Characterization of the Cantor Function

DonNALD R. CHALICE
Department of Mathematics, Western Washington University, Bellingham, WA 98225

This note presents a characterization of the Cantor function that might be used
as an alternative or addition to the development usually presented in real analysis
courses. It may also be utilized to give a short program in Mathematica that easily
generates the Cantor function and other similar functions which we call “devil’s
staircases” (see [4]).

THEOREM. Any real-valued function F(x) on [0, 1] that is monotone increasing
and satisfies (a) F(0) = 0, (b) F(x/3) = F(x)/2, and (¢) F1 —x) =1 — F(x), is
the Cantor function.

Before presenting the proof, recall (see [1]) that if we consider the closed
interval [0, 1] and remove the open middle third, (1/3, 2/3), and next remove the
open middle thirds (1,/9, 2/9) and (7/9, 8/9) of the two remaining intervals, and
then remove the open middle thirds of the remaining four intervals and so on,
indefinitely, what remains is the Cantor set C. Alternatively, x is in C iff x has a
base-3 expansion consisting only of the digits 0 and 2.



